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1 Introduction

In this chapter we will consider what are termed ab initio modelling techniques which have been applied to systems
involving silicon. There is not a precise consensus as to what constitutes an ab initio or first principles technique but
the following are general characteristics.

1. The method should not contain any parameters that are taken from experiment. In principle all that should be
required to perform a calculation would be the names of the chemical species present and possibly a starting
structure.

2. The method should be capable of providing a number of different properties from the same theory (for example
equilibrium structures, migration barriers, vibrational frequencies, optical excitation energies and so forth).

3. The method should be transferable among a variety of systems. This should mean that, in increasing order of
hopefulness, a method that works for silicon should also work for other materials too such as other semiconduc-
tors, metals, ionic solids, highly correlated systems and so on.

In practice, this is not quite achieved by any single theory, and the techniques described are all approximate. In
this review, the Born-Oppenheimer approximation is first discussed, as this is assumed by most techniques described
here. Following this two of the common approaches are described, Hartree Fock theory and the density functional
pseudopotential approach. Steps being taken towards the goal of linear scaling are described and finally quantum
Monte Carlo simulations, a possible method of the future are described.

2 The Born—Oppenheimer Approximation

The solution to the full non-relativistic Schrédinger equation describing a system of atoms would be a function of the
form Up(r, R) where we use the symbol 7 to collectively label the co—ordinates of all the electrons {r;,rs,...} and R
to label the co—ordinates of the nuclei {Rq,Ra,...}. The Born—-Oppenheimer approximation consists of looking for a
separated variable type solution:

Ur(r, R) = Wp(r)x(R). 1)

In this approximation a Schrodinger—type equation can be solved for the electronic degrees of freedom, ¥, while the
nuclei (of charge Z,) are assumed to be stationary. The equation to be solved is
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Note that we will be using atomic units unless otherwise indicated. In these units, h = m, = e = 4weg = 1. The
unit of length is the Bohr radius, ag ~ 0.529A, and the unit of energy the Hartree or 27.2116 eV. Note that we have
labelled the energy as E(R) and will regard it as the “energy with the nuclei frozen at positions R”. This function
defines a potential energy surface which can be used for a number of purposes. For, example the minimum of this gives
the equilibrium structure. Barriers to various complex processes (e.g. dissociation, diffusion) can also be found from
saddle points of this surface.



The equation for x(R) includes terms involving ¥ z(r). In the Born—Oppenheimer approximation, these are neglected,
and the total energy is then just given by E(R) plus the zero point energy of vibration of the nuclei which can be
estimated in the harmonic approximation. The coupling terms can be important under certain circumstances (in
degenerate ground states they give rise to Jahn—Teller distortions [1, 2]). In most other cases, this approximate
separation is acceptable because of the mass difference between electrons and nucleons. One situation for which this
is not adequate is that of muon—spin resonance experiments in which a muon binds an electron to form muonium —
an atom analogous to hydrogen but with only 1/9 the mass. The zero point energy of this is several hundred meV —
an energy comparable with other important parameters (e.g. diffusion barriers estimated from E(R)) in the system.

In truth however, equation (2) cannot readily be solved directly for systems larger than single atoms. In practice some
further approximations have to be made. In the above ab initio spirit the approximation should be (a) non-empirical
and (b) the same for all systems considered. We now move on to consider these.

3 Hartree-Fock Theory

Hartree—Fock theory was one of the first ab initio schemes to be put into practice. It has been widely used for atoms
and small molecules, although less so for materials such as silicon, and only a brief discussion will be given here. The
method is basically a variational calculation, in which the expectation value of the Hamiltonian (3) is minimised in an
approximate wavefunction. The wavefunction is chosen to be a single determinant of one—electron spin—orbitals 1) (x)
where x labels the spatial r and spin co—ordinates :
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Minimisation of the energy in this basis gives the famous Hartree—Fock equations [3] which are now readily solved for
systems containing of order 100 atoms.
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This theory has proved successful, particularly for atoms where it gives a lower energy than density functional theory
to be described in the next section. It has not been widely used for work in silicon, and has one major failing : the
trial wavefunction entirely ignores correlation. This is most easily seen by looking at the wavefunction for a Helium
atom in its ground state which can be considered to be made up from the one-electron configuration 152 :

Vpr(ri,r2) = %%s(rl)%s(m)(ﬂ — 1) ~exp[—a(ri +r2)|(T] = I1) (5)

It is clear that this wavefunction has no dependence on |r; — ra|, which would be the signature of correlation between
the two electrons. This is a serious omission and has disastrous consequences in the modelling of a number of different
systems. Some simple molecules, for example F5, do not have a bound state in Hartree—Fock theory, and when applied
to the uniform electron gas Hartree—Fock theory gives a zero density of states at the Fermi level. This suggests that
systems such as simple metals would not be well described by this approximation.

Numerous schemes have been attempted to add this correlation. Some of these apply Moeller—Plesset perturbation
theory which is performed “on top” of a self-consistent Hartree Fock theory. These calculations are extremely time
consuming and haven’t been used extensively in the modelling of semiconductors.

In principle, the exact ground state (or even an excited state) energy can be obtained by doing a configuration
interaction calculation in which the wavefunction is written as a linear combination of determinants. This is an even-
more demanding calculation, as an enormous number (millions!) of determinants must be included, and the number
required increases rapidly with system size. In practice, this that cannot really be converged for a system large enough
to model a bulk solid, and as a result, this method has not been applied to model properties of silicon. We will now
pass onto methods that are more routinely used to study processes in semiconductors.

4 Density Functional Theory

The principal feature of density functional methods is that the many problem is solved directly for the charge density,
n(r) rather than for the many-electron wavefunction ¥. This is a massive simplification, as we only need consider a
function of three variables =,y and z, rather than the 3N variable problem above.



4.1 The Hohenberg—Kohn Theorem

Prior to the work of Hohenberg and Kohn in 1964 the use of the electron density as a fundamental variable was
thought of as a somewhat ad hoc approach. However, Hohenberg and Kohn [4] showed that this method may in
principle enable the calculation of the exact ground-state energy. The Hohenberg-Kohn theorem states that the
external potential V¥ (r) is determined to within an additive constant, by the electron density n(r). This is a quite
remarkable assertion, and the proof presented was astonishingly simple [4].

The implication of this is that, because the usual machinery of quantum mechanics (i.e. solving the Schrédinger
equation) enables the calculation of the ground state energy from the external potential, if this potential is uniquely
determined by the charge density, it must follow that it is possible to write down an expression for the total energy
directly in terms of the electron density. Hohenberg and Kohn wrote

ETOT = EHK [n] = /n(r)V”t(r)dr + F[n]

where the functional F[n] is universal in the sense that it only depends on the electron density and and not on the
background potential.

The second theorem included in the work of Hohenberg and Kohn stated that for a trial density 7n(r), correctly
normalised and satisfying n(r) > 0,

Ewuk[n] > Egs

so that it may be possible to find the ground state charge density using a minimisation technique.

A number of elaborations have been proposed since this pioneering work. An important generalisation has been to the
case where the external field includes a spin—dependent potential (as is the case with a magnetic field, where a term
proportional to ), B(r;) - s; must be added to the Hamiltonian (3). This time we need two fundamental variables
ny and n| the spin—up and spin-down densities which together fix the external potential operating [5, 6]. This is
sometimes referred to as local spin—density functional theory. The main advantage of this formalism has turned out
not to be that magnetic fields can be described, but rather that when coupled with a local density approximation (see
section 4.3) the description of open—shell atoms, molecules and more complex systems such as paramagnetic defects
in semiconductors is vastly improved. Spin—orbit coupling terms can also be included within this framework [7].

Another important generalisation was to finite temperature systems [8] in which all properties of a system in equilibrium
with fixed temperature T and chemical potential pu are determined by the charge density. This has also proved to be
important when attempting to model metals.

One initial objection to a practical use of the second theorems was that not all functions are v-representable. In other
words not all functions can necessarily be associated with an anti-symmetric ground-state wavefunction of a Hamil-
tonian. It is not known what conditions are necessary or sufficient for this. Fortunately, in developing the constrained
search derivation of the Hohenberg—Kohn theorem, Levy showed that (i) the first theorem also applies to degenerate
ground states, a loophole in the original Hohenberg—Kohn derivation and (ii) it suffices for the variational principle
that the trial densities be N-representable, that is that they be obtainable from an antisymmetric wavefunction. This
is a much weaker condition and is satisfied by all continuous, non—negative and correctly normalised functions [9, 10].

4.2 The Kohn—-Sham equations

The above theorems paved the way for a new approach to structural calculations. However, it has not proved possible
to write down an explicit form for F[n] which is accurate enough for materials such as silicon, although some progress
has been achieved in systems in which the density does not vary too rapidly [11]. Kohn and Sham (KS) [12] addressed
this problem in 1966, by introducing an auxilliary system containing N non-interacting electrons (in states 1) in a
background potential vs(r), chosen such that the charge density in this auxilliary system is exactly the same as that

in the full interacting system :
S @) = n().
A

It is simple to calculate the kinetic energy of the non-interacting system of electrons where the electrons are in these
states using

T.ln) = 30l - 5 9% lu) (©

A=1



The true kinetic energy of the interacting system will of course differ from this, and the difference between this term
(the largest contribution) and the exact result is treated separately. The total energy is then written as

Eror = Ts[n] + /Ve“(r)n(r)dr + 1 / Mdrdr’ + Eycln]

2 |r — 1’|

where a suitable approximation is to be sought for E,.. This term contains the exchange and correlation energies and
the correction to the kinetic energy. We will consider this term in the following section.

Kohn and Sham showed that the v, functions can be obtained from a self-consistent solution of the equations :
1
—5Viat vs(r)a(r) = exyha(r)
n(r')dr’  §FE..

vs() = V) + / |r — 1’| * on(r)
n(r) > la(r)? (7)
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A more detailed discussion of this (and the various extensions to it, particularly the extensions to spin polarisation,
finite temperatures and variable occupancies) is contained in, for example, [13] or [14]. These equations are a tremen-
dous simplification to the original many body problem. Before we turn to the details of how this is done in practice,
we will first consider the common approximations for E,. and then give a brief discussion of the reliability of this
formalism.

4.3 Approximations for F,.

Up to this point, no approximation has yet been made — if the functional E,.[n] were known, an application of the
above procedure would produce the correct ground state energy and charge density. We will now review some of the
common approximations made for F,.

The most common approach is the local density approximation (LDA). This treats the inhomogeneous electron case
as uniform locally :

By = / n(r)eqe (n(r) dr

where €,.(n) is the exchange—correlation energy per electron for a uniform electron gas of density n. Clearly this is
very much in the spirit of the Thomas—Fermi treatment of kinetic energy, but this time the approximation is much
more accurate as the exchange—correlation energy is smaller and more slowly varying.

An improved description is that of the local spin—density approximation (LSDA) [5]. In this one has two quantities,
the spin-up and spin down charge densities, ny and n; and this time we use the expression €,.(nt,n|) for the uniform
electron gas.

We now discuss the determination of €,. for the homogeneous electron gas. Typically we split this term into exchange

and correlation effects Eyc[ny,n)] = Ez[nt,ny] + Ec[ny,n;]. The exchange part is easily evaluated via an analytic
Hartree—Fock treatment of the uniform electron gas :
1/3
__3(3 4/3 /3

The correlation part is more complex, and is evaluated in the high density limit using many body perturbation theory
[15] and in the low density limit by Green function quantum Monte Carlo calculations [16]. Typically these numerical
results are fitted to a simple parametrised form. One of the most common parametrisations is that of Perdew and
Zunger (PZ) [17] who first fitted two limiting the non—polarised result e.(n/2,n/2) and the completely spin—polarised
result €.(n,0). If we introduce the Wigner-Seitz radius 7y = (47n/3)~'/? then ¢, for the non-polarised and fully
polarised electron gases are given by :

o = Sl +Bre + Bars} for g > 1
"\ B+ (A+Crg)In(rs) + Drs, forrg <1

The values of the coefficients are given for both cases in TABLE 1.

A partially polarised gas can be characterised by the polarisation factor £ = [ny — n]/n where 0 < ¢ < 1. In this case
the correlation energy is averaged over the polarised and non-polarised cases using the procedure due to von Barth
and Hedin [5] :

colny,n)) = €o(n/2,1/2) + F(©)[ecln,0) — eo(n/2,n/2)] (9)



Table 1: Perdew—Zunger parametrisation of exchange-correlation energy

Y B B2 A B C D
Non-polarised | -.1423 | 1.0529 | 0.3334 | 0.0311 | -0.0480 | 0.0020 | -0.0116
Polarised -.0843 | 1.3981 | 0.2611 | 0.0155 | -0.0269 | 0.0007 | -0.0048

where the interpolation function is given by

4/3 _\4/3
L (10)

An alternative parametrisation has been given by Vosko—Wilk—Nusair (VWN) [18]. More recently, a new parametri-
sation has been suggested by Perdew and Wang [19] with a number of improvements over the previous work. This
may be the most accurate representation available at present, but for most computational purposes, PZ and VWN
parametrisations give very similar results.

These formulae have been used widely over two decades to model an enormous variety of systems ranging over atoms,
molecules, clusters and solids and have made a significant contribution to a number of areas of physics, chemistry and
materials science. The accuracy has been remarkable, and more than expected from such a simple approach.

Early attempts to improve on the LDA were not successful. The most obvious step on from LDA is to develop a
function €;.(n, |Vn|) which would take into account the inhomogeneity of the gas. The first attempt at this was the
gradient expansion approximation (GEA). On dimensional grounds, the this is seen to be of the form

E,. = /n(r)ezc(n(r))err/C(n(r))'ZTnﬂLdr-

However, when applied to real systems such as atoms, the charge density varies far too quickly for perturbation
theory to be valid, and as a result results were made significantly worse by this supposed improvement. For example,
correlation energies of atoms were predicted to be positive.

From this initial work, the incorporation of gradient corrections has gradually developed. It has been realised for
some time [7] that the exchange—correlation hole around each electron satisfies certain sum rules. In particular, the
exchange hole integrates to one electron, is strictly negative and the correlation hole integrates to zero. The LDA
corresponds to a real physical system and therefore satisfies these criteria automatically whereas the GEA being a
leading term in a series expansion does not. Gradually gradient corrections were incorporated in ways that enforced
these sum rules [20, 21]. In additional various co-ordinate scaling laws [22] and limits [23] that should be obeyed by
functionals were developed. The resulting approximations, known as generalised gradient approximations (GGAs) are
now coming into widespread use.

An early functional referred to as Becke—Perdew (BP) consisted of the Perdew formula for correlation [21] combined
with an extremely accurate but empirical formula for exchange developed by Becke [24, 25]. A more widely used
functional was developed by Perdew and Wang in 1991 [26] and is referred to as PW91 in the literature. Applications
of this show improvements over the LDA, particularly for atoms and molecules and alkali metals [27]. However, when
applied to semiconductors such as silicon, mixed results were obtained. In these materials, the density gradients are
never too large and the LDA does exceptionally well. The GGA tends to increase bond lengths and as a consequence
reduce bulk moduli giving somewhat worse values than the LDA. However, significant problems were encountered
with the construction of pseudopotentials within the GGA [28] which may have been a factor behind the variable
results obtained. Most recently, a new functional referred to as PBE96 has been developed [29, 30] and this is both
a simplification and an improvement on the PW91 functional, removing a number of undesirable features, although
numerically both PW91 and PBE96 give very similar results.

4.4 Reliability

Calculations performed in the local density approximation have been shown to be remarkably accurate for ground
state properties. For example the structure of small molecules are given to within 1-2% and vibrational frequencies to
within 5-10%. The one disappointment has been the binding energies of molecules which are typically overestimated
by 10% or so. The GGA improves this as shown in table 2, taken from [29].

Early calculations focussed on properties of bulk semiconductors. For example, it was soon found that lattice constants
and bulk moduli were given accurately. Zero temperature phase stability diagrams were obtained [31, 32]. Calculation
of phonon spectra followed — a review of early work is given by Kunc [33] and more recent results [34] are given in



Table 2: Atomisation energies of some small molecules in kcal/mol [29]

Molecule | HF | LSDA | PW91 | PBE96 | Expt.
Hy 84 113 105 105 109
CHy 328 | 462 421 420 419
H>0 155 | 267 235 234 232
Os 33 175 143 144 121
i) -37 78 54 53 39

Table 3: Calculated (c) and experimental (e) lattice constant and phonon frequencies [34].

Si(c) | Si(e) | Ge(c) | Ge(e) | GaAs(c) | GaAs(e)
ao (A) 10.20 | 10.26 | 10.60 | 10.68 | 10.61 10.68
Tro(em™) | 517 | 517 | 306 | 304 271 271
Tro(em™t) | 517 | 517 | 306 | 304 291 293
Xra(lem™b) | 146 | 150 80 80 82 82
Xpa(em™b) | 414 | 410 | 243 | 241 223 225
Xro(em™1) | 466 | 463 | 275 | 276 254 257
Xro(em™Y) | 414 | 410 | 243 241 240 240
Lra(em™) | 111 | 114 62 63 63 63
Lra(em™%) | 378 | 378 | 224 | 222 210 207
Lro(em™Y) | 494 | 487 | 291 | 290 263 264
Lro(em™) | 419 | 417 | 245 245 238 242

TABLE 3. It is seen that these frequencies are extremely reliable. Localised vibrational modes of impurities have also
been obtained [35] and compare well with experiment. Surfaces have also been extensively modelled — for example,
the 7x7 Takayanagi reconstruction of the Si [111] surface has been modelled [36]. Point defects have been extensively
treated [37] and even hyperfine couplings have been extracted [38]. The sheer volume and variety of applications
illustrate the applicability the robustness of this method.

5 Pseudopotentials

The use of pseudopotentials has proved an extremely important step in using ab initio methods to model large systems.
It has long been realised that, although a silicon atom has 14 electrons, only 4 of them play a significant role in chemical
bonding. The core electrons remain localised close to the atom and the shapes of the 1s, 2s and 2p orbitals are largely
unaffected by the chemical environment of the silicon atom. The basic idea is that instead of using the full Coulomb
potential, —Z/r, to describe the nuclear interaction, we use a pseudopotential, VP*(r), which effectively eliminates the
core states from the calculation. An excellent review of this technique has been compiled by Pickett [39].

Using the full Coulomb potential can cause considerable problems. The total energy then becomes extremely large
and since one is interested in relatively small differences in energies this places great demands on the precision of
calculation, especially as the energy is overwhelmingly dominated by contributions from electrons localised near the
nucleus, which are the least important as far as physics, chemistry or materials science is concerned. Secondly, the
fitting of core wavefunctions with either plane waves or Gaussian orbitals is extremely difficult and small errors can
make large differences in the core eigenvalues. FIGURE 1 shows the 4s wavefunction and pseudo-wavefunctions in
Ni. It is clear that the pseudo-wavefunction is a much simpler and smoother function to approximate than the all-
electron wavefunction. Thirdly, for the heavier atoms, relativistic effects are important and the Dirac equation is
required. However, the valence electrons can continue to be treated non-relativistically and a spin-orbit potential can
be introduced which describes polarised valence electrons.

One important feature of pseudopotentials is that there is no—unique method of calculating them — at least to a
casual glance, different pseudopotentials for the same element can appear to differ more than pseudopotentials for
different elements! This is illustrated in FIGURE 2 in which three prescriptions for the [ = 1 component of the carbon
pseudopotential are shown. All give excellent results for the properties of carbon!
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Figure 2: Three different constructions of the [ = 1
pseudopotential for carbon

Figure 1: The 4s all-electron (AE) and pseudo (PS)
radial wavefunctions for the Ni atom.

5.1 Ionic Pseudopotentials

Empirical pseudopotentials were first developed to produce a good description of some physical property. For example,
a functional form for a pseudopotential V?%(r) was specified. This was varied until the solutions E) of

(T + VP )\ = Exiby

agreed with properties of some known system (e.g. band gaps, deformation potentials of bulk silicon). The potential
was then used to model a related system. The problem with such pseudopotentials is that they are not very transferable
— they only work well in systems which are very similar to those in which they have been fitted.

(11)

One obvious reason for this is that these pseudopotentials include the potential from the valence states which will
certainly vary with chemical environment. A transferable pseudopotential must be de-screened, or after determining
a potential VP® which when used in equation 11 gives acceptable solutions, an ionic potential must be constructed by
subtracting off the potential arising from the valence states.

Vps (I‘) — VP (I') B / nps (I") dr’ B

on |I‘ _ I_/|

Vae(n?*(r)) (12)
where
() = 3 k() (13)
A
and the sum is over the occupied valence pseudo eigenstates. Carrying out this procedure opens up the possibility
of generating pseudopotentials from a first—principles calculation on the atom and then using it in a solid state
environment, thereby regaining the ab initio spirit of the procedure.

5.2 Approximations

A number of approximations are implicitly used in the construction of pseudopotentials. First a one—electron picture
is being used when splitting electrons into core and valence sets. This however fits naturally with the Kohn-Sham
scheme.

A second approximation is the frozen core approzimation which is fundamental to the concept of a pseudopotential
— that certain of the one—electron states do not change significantly, but remain frozen when transferred from one
chemical environment to another. It is not always obvious which these are. For example, in the case of the II-VI
compound semiconductor ZnSe, it may be hoped that the Zn 3d electrons can be treated as core states, as they are
not expected to participate significantly in chemical bonding. However, this is not a successful approximation as the
resulting predicted lattice constant is far too short at 5.19Acompared to the experimental 5.67A. This error is removed
if the 3d electrons are treated as valence states. In fact the shape of these states does change and the charge density
becomes noticeably non-spherical [40].

A third approximation is made in the de-screening step described above — the small core approximation. This assumes
that the core and valence states do not overlap significantly. The problem is that the exchange—correlation potential
is non—linear and that it is certainly not true that

Vae(ne +ny) = Vie(ne) + Vie(ny)



This is approximately true when the core and valence density are localised in different regions of space, but is certainly
violated by the d states of group III elements such as Ga and In which, although they do not participate in bonding, do
overlap appreciably with the s and p valence states. One result of this is that standard “d in the core” pseudopotential
calculations of the lattice constant of GaAs give a result 2.5% shorter than experiment, and agreement is worse in InAs.
This is not the case in an all-electron calculation. This can be improved by the use of non-linear core corrections
[41]. The idea here is that the de-screening step is carried out using the exchange—correlation potential of the valence
charge density plus a component of the core density. This component of core density needs to be carried along in the
pseudopotential calculation and added onto the valence density before evaluating the exchange—correlation potential
and energy.

5.3 Transferability and Norm conservation

A major step forward in the attempts to produce transferable first principles pseudopotentials came in the early
1980s with the advent of norm conserving pseudopotentials. This term is used as outside a certain cutoff radius,
these potentials give rise to pseudo-wavefunctions which are identical to the true all-electron wavefunction, not just
proportional to it as was the case previously. The cutoff radius is not an adjustable parameter, but rather a quality
parameter — the smaller this radius, the closer the pseudo-wavefunction is to the true wavefunction and therefore the
more transferable the pseudopotential. Typically the cutoff radius is chosen to be between the outermost node and
outermost radial maximum of the true orbital.

Hamann, Schliiter and Chiang [42] showed that norm—conservation also guaranteed that the energy derivative of the
logarithmic derivative of the wavefunction, 9]/, is the same as that for the true wavefunction. This means that the
scattering properties should match over a large energy range, giving these potentials their transferability. More recently
it has been shown that higher energy derivatives can also be matched [43]. Indeed, a comparison between the energy
dependence of the logarithmic derivative of the all-electron and pseudopotential wavefunctions is one common test of
the quality of a pseudopotential. A second test is a comparison between energies of different electronic configurations.
For example, the energy difference between C in the s?p? and sp> configurations is 8.23 eV when the all-electron theory
is used and 8.25 eV using the BHS pseudopotential described below. This gives us confidence that the energetics of
different bonding patterns may be well represented in the solid state. A more recent study has proposed a systematic
method of measuring transferability [44].

Norm-conserving potentials are non-local and operate differently on s, p and d type wavefunctions. They usually
have the form ), V}(r)pl where P, is an angular momentum projection operator. A number of different methods for
constructing such potentials have been proposed and we will now review these. An early scheme was proposed by
Kerker [45], although these potentials have not been widely used. We start with the work of Hamann, Schliter and
Chiang [42].

5.4 The pseudopotentials of Bachelet, Hamann, Schliiter and Chiang

Hamann, Schliiter and Chiang (HSC) [42] proposed a very systematic method for construction, and this was exploited
by Bachelet, Hamann and Schliiter (BHS) [46] who applied this methodology to all atoms from hydrogen to plutonium.
They fitted the pseudopotentials to a simple analytic form and published the resulting parameters for all these elements.
The following stages are involved:

1. The Dirac equation (in the LSDA) is solved for a specimen atomic configuration. The determination of the
all-electron Kohn—-Sham eigenvalues € and eigenfunctions uy. The following steps are then carried out for each
angular momentum, [ =0,1,.. ..

2. A “first—step” pseudopotential is constructed by smoothly cutting off the » = 0 singularity in the screened all—
electron potential just found. This is carried out, whilst at the same time ensuring that the eigenvalue is not
changed.

3. The pseudo—orbital corresponding to this new potential is modified to impose norm—conservation.

4. The “stage-two” pseudopotential that gives rise to this new orbital is determined by inversion of the radial
Schrédinger equation.

5. This pseudopotential is descreened to produce an ionic pseudopotential.

6. This numerical representation is fitted to a simple analytical form thereby making it simple for other workers to
use.



The BHS pseudopotentials have proved reliable in a large number of calculations. However, they are quite hard. In
practical terms, this means that a very large number of plane waves is required to represent them in Fourier space.
This has been addressed by Vanderbilt [47] who suggested modifications to certain steps of the BHS procedure. This
led to pseudopotentials of comparable accuracy which have more rapidly convergent Fourier transforms.

5.5 The Troullier—Martins construction

Another form of pseudopotential which has come into common usage is that of Troullier and Martins [48]. These
pseudopotentials were designed to be smoother and more amenable to expansion in plane waves. The work followed
on from that of Kerker [45], but additional conditions were imposed. In essence,

1. the wavefunction and its first four derivatives were forced to be continuous at the cut-off radius. This is a
distinct improvement on both Kerker’s work and that HSC pseudopotentials in which only two derivatives were
continuous.

2. The odd derivatives of the pseudopotentials at » = 0 were forced to be zero

3. The screened pseudopotential was forced to have zero curvature at r = 0.

Troullier and Martins argued that to produce a pseudopotential of equal quality to the Hamann—Schliiter—Chiang
method, these additional constraints allowed a much larger cutoff radius to be chosen, giving a significant increase in
convergence rate with basis set size.

5.6 The ultrasoft pseudopotentials of Vanderbilt

A much more radial scheme for the construction of soft-pseudopotentials has been suggested by Vanderbilt and co—
workers [49, 50]. Vandebilt noted that elements such as oxygen require large numbers of plane waves to describe
valence states tightly bound to the nucleus and this cannot be improved in conventional norm—conserving schemes as
a significant weight of these states lines inside the cut—off radius. Norm—conservation was relaxed, allowing charge to
flow out of the core region, giving a much more slowly varying charge density that can be treated with fewer plane
waves and the charge balance between core and valence regions later restored by a charge augmentation step. This
enables oxygen to be teated with a cut—off as low as 25 Ry. These potentials are now coming into more widespread
usage.

5.7 The Kleinman—Bylander form

In general, the action of a non—local potential V on a function ¢(r) may be written as

alV10) = Vo) = [ Virxole')ar' (14)
where the kernel V(r,r’) may be written as

V() =Y Vilr, )Y, (0,9)Yim (¢, ¢') (15)
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The non-local pseudopotentials discussed above are however non-local only in the sense that they are angular—
momentum dependent and may be written as

VP = Z Yt ) Vi () (Yim| (16)
Im

so that in this case the function V;(r, ') of equation 15 may be written as
V(r,r") =Vi(r)d(r —r") (17)

This form is known as semi—local as it is non—local only in the angular co—ordinates. In working out the matrix
elements of this in N plane waves, N(N + 1)/2 integrals need to be done, a very heavy workload. Kleinman and
Bylander [51, 52] suggested that by working with a completely non—local potential (i.e. non—local in the radial as well
as angular co—ordinates) the workload can be reduced. In this, the quantity V;(r,r') in equation (17) is written in
separable form as

Vi(r,r') = Fy'(r)Fi(r')



so that when evaluating of matrix elements V;; = (i|V|5) in a set of N basis functions |i), the r integral (which involves
only the basis function i), and the r’ integral involving only function j can be done separately, reducing the number
of integrals to N, an enormous computational advantage.

The precise prescription put forward by Kleinman and Bylander was

|0V ) (V1 0V
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where an arbitrary local potential Vj,. is separated out the quantity 6V; = Vi(r) — Vioc(r) is introduced. The functions
YY) are the pseudo-eigenfunctions from which the original pseudopotential was created.

The action of this KB form of the pseudopotential on an atomic pseudo—orbital is just the same as the original
potential, but in general the two forms will not produce identical results in a molecular or solid state problem. Indeed,
care has to be taken when deciding on the choice of Vj,. or what are termed ghost states may appear. These are
unphysical states having very low energies. The origin of these states has been studied by Gonze et al.,[53, 54] and
criteria developed by which the appearance of these states can be avoided. In brief, the 6V, should be as small and
short-ranged as possible, and large positive values should be avoided. Generalisation of the KB form have been made
by Vanderbilt [55] and Bloechl [56].

6 Solution of Kohn—Sham equations

Here we turn to some of the practical details of the solution of the Kohn—Sham equations. Usually the equations have
been solved by expanding the solution in a basis. This transforms the partial differential equation to a discrete matrix
problem that can then be solved. This is in itself a huge area of work, with many different techniques being employed.
Here only a few general points will be made.

6.1 Choice of Boundary Condition

Bulk silicon is of course a periodic system, and as such is best modelled using a unit cell applying periodic boundary
conditions, that the charge density is periodic, and that the Kohn—Sham orbitals satisfy Bloch’s theorem. When
modelling a defect in a solid, there is no longer periodicity and so a unit cell is no longer ideal. Two approaches are
commonly adopted using supercells or clusters.

In the supercell approach, the defect is placed in a large unit cell, typically containing 50-100 atoms. It is hoped that
this is sufficiently large that the interaction between defects in adjacent supercells is small. This is difficult to achieve,
and even with 50 atoms, defect related states which are quite localised are found to have up to 0.5 eV of spurious
dispersion across the zone. When combined with the typical LDA underestimate of the band gap, this can result in
states that should be strongly localised mixing strongly with band states. This dispersion width is often comparable
with other energies of interest in the problem. When a defect gives rise to a dipole moment, the interaction is greater,
and methods for reducing such interactions have been proposed [57]. Interaction effects can be more serious if a defect
such as a dislocation is modelled. This time, to restore periodicity, two dislocations must be placed in the unit cell
and the interaction between them is of course very large.

In contrast, the cluster approach does model only one copy of the defect, but this time a new penalty is paid — the
interaction between the defect and the surface of the cluster. This should not be too significant if the cluster is large,
but this is not always easy to demonstrate. One advantage is that defects that are intrinsically non—periodic such as
stacking faults or dislocations can be modelled easier. The surface of the cluster is generally passivated with hydrogen
so that no dangling bonds are left. This is important as otherwise the electronic states associated with the unpaired
electrons would fall into the band gap and interfere with the states associated with the defect being studied. It is
best to relax these hydrogen atoms to the equilibrium bond length as this reduces the strain on the cluster of silicon
atoms. Calculations using clusters with full self-consistent density function theory routinely treat 2-300 atoms [58].

A third approach is the Green function approach — in principle this combines the best features of both clusters and
supercells, that only one defect is being studied, but that defect is embedded into an infinite solid. This approach
was used twenty years ago to study point defects [59, 60] but no lattice relaxation was incorporated at that time, and
since then this technique has not been used frequently. A slightly different Green—function method, the “quasi—band
method” has been used by Lindefelt and Zunger [61] to study 3d transition metal impurities in silicon.

The choice of approach is related to the choice of basis and possibly to the individual worker’s background (it is not
unusual to see periodic solids modelled with clusters and molecules modelled in unit cells!).



6.2 Choice of Basis set

Two common choices of basis set are plane waves and Gaussian type orbitals.

The usual choice has been plane waves as these fit naturally with periodic boundary conditions, which are generally
used by condensed matter theorists. In this case, the Kohn—Sham orbitals for some point k in the Brillouin zone are
expanded in terms of plane waves:

Unk(r) =Y cn(G) expli(k + G) - 1] (19)
G

This expansion has the advantage that it is very transparent (there are no additional parameters that may vary from
one worker to another), it is very stable (plane waves with different G are of course orthogonal, so no instability can
creep into the calculation through near—linear dependencies in the basis set), it is clear how to improve the expansion
(usually, all plane waves with G2 /2 < E.,; are included - to improve this we just increase E.,;), it is not biased (charge
can move without restriction to any point of the unit cell) and finally it is very simple to program (if an element with
f orbitals is modelled, no further coding is needed, just a higher E.,; and more CPU time).

There are also some disadvantages with plane wave expansions. The principal of these is that an extremely large
number of functions need to be used. For example, with an element such as silicon, a minimum of 100 planes waves
per atom need to be used. Some elements are particularly difficult - for example first period elements such as carbon
and oxygen or the 3d transition metals. This means that the time and memory requirements of such a code will be
considerable. Furthermore, if a unit cell contains 100 silicon atoms and just one oxygen atom, the presence of one
difficult atom (as is often present in a defect) controls the size of the basis and results in an unnecessarily flexible
descriptive power having to be employed at all points in the unit cell. One way of avoiding this is to use a technique
pioneered by Gygi [62] and applied to solids by Hamann [63]. The alternative is to use localised orbitals:

0am) = 3 0. (20)

A common choice for the functions ¢; is Gaussian type orbitals:
9i(r) = (x = Rio)"™ (y = Riy)"™ (2 = Rz)"se 7R,

where ni,ne and ng are integers. If these are all zero they correspond to s-orbitals of spherical symmetry. Orbitals
of p-symmetry correspond to one of these integers being unity and the others zero, whereas five d-like and one s-like
orbital can be generated if ), n; = 2.

This expansion has the advantage that it is very efficient (results can be obtained with only 8 orbitals per atom, and
quite well converged results with 16 functions), not dependent on atom type (the first—period elements such as carbon,
nitrogen and oxygen can be treated just as easily as silicon, gallium, arsenic etc.), it is flexible (if we have one difficult
atom, additional orbitals can be placed on just that atom so the overall speed of the calculation is not significantly
affected). Disadvantages include the fact that the functions can become over—complete (numerical noise can enter a
calculation if two functions with similar exponents are placed on the same atom), that they are difficult to program
(especially if high angular momentum functions are needed), that it is difficult to test or to demonstrate absolute
convergence (many things can be changed — the number of functions, the exponents, the location of the function
centres).

One final advantage of localised orbitals is that the Hamiltonian matrix becomes sparse as the system size increases,

and this is one feature that is important for the development of linear scaling methodologies which may eventually
replace todays conventional methods.

6.3 Sampling of the Brillouin Zone

When working within periodic boundary conditions, the Kohn—Sham orbitals are evaluated for a given point k within
the Brillouin zone and satisfy the Bloch condition. In terms of these, the charge density is given by

n(r) =Y farltn(r)[? (21)
nk

where is sum is over bands and allowed k-points in the Brillouin zone (and as we are modelling an infinite system
there are an infinite number). f i is the occupancy of the band n at the k—point k. In practice this sum can
be well approximated by a small set of carefully chosen points, especially for systems with a band gap such as the
semiconductors considered in this volume. These points, known as special points, are placed in the irreducible Brillouin



zone (IBZ), which for our purposes is the smallest volume of the Brillouin zone, which when operated on by all the
space group operations of the system, covers the whole zone. For bulk silicon, the IBZ is 1/48th of the whole zone.
Baldereschi [64] looked for the single best point, if only one were chosen. A more general scheme was proposed by
Chadi and Cohen [65] who produced a set of equations that can be solved for a chosen density of k-points in the zone.
Monkhorst and Pack produced a scheme based on equally spaced points [66]. All these schemes converge rapidly for
insulators, but slowly for metals where much work has to be done to define the shape of the Fermi surface.

6.4 Traditional Diagonalisation Techniques

Early implementations of the LDA preceded by taking matrix elements of the Kohn—Sham Hamiltonian in basis
functions and solving the resulting eigenvalue problem. The first condensed matter application looked at properties
of bulk semiconductors and therefore used a basis of plane waves. The formalism for this is presented by Thm, Zunger
and Cohen [67] and Yin and Cohen [68]. Further reviews have been given by Thm [69], Srivastava and Weire [70] and
the direct approach is discussed briefly by Payne et al.,[71]. The main points are

1. An initial input charge density is chosen. This could be a linear combination of atomic charge densities and is
required in Fourier components :

n(r) = Zn(G) expliG - 1. (22)
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2. The Fourier components of the Hartree potential are readily found from this by the analytic solution of Poisson’s
equation. The components are VH(G) = 47n(G)/G?.

3. The Fourier components of the exchange—correlation potential are found. First the Fourier components of charge
density n(G) are found on a equally spaced grid in real space using a fast Fourier transform. This is an extremely
rapid step requiring only O(N In N) operations for N plane waves. The exchange correlation potential is then
evaluated on this grid, using the LDA locally at each point (some additional problems that occur when using a
GGA are discussed by White and Bird [72]) and a second FFT is performed to obtain the Fourier components.

4. The matrix elements of all local potentials (the local part of the pseudopotential and the two many—body terms
described above) and the kinetic energy operator are trivially found in a plane wave basis.

5. The matrix element of the non—local part of the pseudopotential is more involved, and the traditional evaluation
is described in [67].

6. All these terms are added together to give the full Hamiltonian, which is then diagonalised giving the Kohn—Sham
eigenvalues and eigenvectors.

7. The output charge density corresponding to these solutions is found using special k-point sampling described
above. This will not be the same as the input charge density we started with above.

8. An iterative procedure is used to move to a self-consistent solution. Some methods for this are reviewed in [39).

9. Care needs to be taken when finding the total energy, especially with the G = 0 Fourier component. This is
discussed in [67].

10. The forces acting on the atoms are found using the Hellmann-Feynman theorem [73, 74] which in this case
involves finding the expectation value of the derivative of the pseudopotential, and adding on the derivative of
the ion—ion interaction term. This is very much faster than finding a total energy, but care has to be taken in
monitoring the convergence as the force is quite sensitive to errors in the charge density (more more so than the
energy, which is of course variationally protected, giving a quadratic dependence on errors).

A similar procedure can be followed when using localised orbitals, but this time different groups have developed
different methodologies. The main differences are

1. The matrix problem is now a generalised eigenvalue problem as the basis functions are not in general orthogonal.

2. Matrix elements of the kinetic energy and pseudopotential are more difficult to program, but are less demanding
than for the plane wave case above as the work done is only O(N) because of the localisation of the basis
functions.



3. The Hartree potential raises a significant challenge. A direct coding of this introduces four—centre integrals

Vi = / SV (1) gidr = by / ¢i(r); (r) dr (x') i (x') drdr’ )
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where b;; is the charge density matrix in this basis. Much work has been invested into the evaluation of these
integrals, as they also occur in implementations of Hartree—Fock calculations, but their evaluation is still a
demanding task. These can be avoided by either solving Poisson’s equation numerically [75] or, most efficiently,
by introducing an intermediate fitting basis [58]. The latter approach has the advantage that the total energy,
Hartree potential and force and all be found consistently in the same approximation, so exact internal consistency
is maintained in the calculation.

4. The exchange correlation potential also causes problems. This can be found either using a discrete grid or again
more efficiently by using an analytic approximation [58]. Again, the analytic approach has the advantage that
exact internal consistency is maintained, but the disadvantage that a further approximation has been made.

5. The matrix has to be set up and diagonalised as above.

6. The evaluation of forces is more complex than in the case of a plane wave basis, as localised orbitals are placed
on atoms and move with the atoms. To find the forces, all terms in the total energy therefore need to be
differentiated as this hidden dependence on atom position is passed to the charge density. This means that
force evaluation, although still much faster than the self-consistent cycle is a more significant contribution to
the calculation than it is in plane wave calculations.

Direct diagonalisation is not now used for plane wave calculations as it would be far too costly. A single workstation
can comfortably diagonalise matrices of size around 1000. As a minimum of 100 plane waves per atom are needed,
this corresponds to only 10 atoms and this is especially inefficient as only 1-2% of the wavefunctions are needed. The
first improvement was the use of iterative diagonalisation in which only the occupied Kohn—Sham states were found,
although this has been superseded by the methods described below. With localised orbitals, direct diagonalisation
does not imply such a large overhead, as the number of occupied states is a much greater percentage of the total
number. This is still used by many groups.

6.5 Car-Parrinello Molecular Dynamics

The Car-Parrinello methodology has become a widespread method of solving the Kohn—Sham equations. Molecular
dynamics has been a popular way of modelling systems using empirical potentials for many years. The principle has
been to form an interatomic potential that returns the total energy as a function of the atom positions V({R;}).
Motion of the atoms in governed by a Lagrangian

L=3 Y MR- V(R

and equations of motion
ov

OR;
These can then be integrated and properties of the system evaluated. For example the temperature of the system can

be increased, leading to melting, the liquid studied, the system could then be rapidly cooled and the defects frozen in
studied and so on.

MR; = —

Of course, this calculation is not quantum—mechanical. However, Car and Parrinello [76] have put forward a formalism
which enables the function V({R;}) to be treated quantum mechanically within the LDA. The Lagrangian is of the
form

D=5 SOMul + 50y [ 1P - BUR} (1)
% A

where F is the Kohn—Sham energy functional, u is an arbitrary fictitious mass the ¥, are subject to the holonomic
constraints of orthonormality. The resulting equations of motion are

l“./;k (I‘, t) = _I;['(/)A (I‘, t) + Z A)\V,(/)V
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where the A’s are Lagrange multipliers. These equations are integrated, and if the kinetic energy of the nuclei
and fictitious kinetic energy of the electronic degrees of freedom are gradually reduced (either by directly scaling
the velocities, by including a dissipative term or by attaching a Nosé-Hoover thermostat) the equilibrium state of
minimum energy is attained. Car and Parrinello showed that this method reproduced the values of bulk properties
such as phonon modes given by static calculations. One interesting feature of this method is that the calculation can
move off the Born—Oppenheimer surface discussed above. Advantages of this include the fact that the Hamiltonian
does not need to be stored, it is not explicitly diagonalised, reducing the workload from O(N?3) to O(NM?) where N
is the number of basis functions and M the number of occupied levels. Further discussion of practical details (how
orthonormality of the orbitals is maintained and how the equations of motion are best integrated) is given by Payne
et al.,[71].

The applications of this are very numerous, with many notable successes. An early study was of amorphous silicon [77].
Calculation of diffusion constants can has also been attempted [78]. More recently, finite temperature thermodynamic
properties have been found using an extension of this technique [79]. More details of the method and its successes are
given in [80].

6.6 Direct minimisation of the Kohn—Sham functional

An alternative strategy is to regard the Kohn-Sham energy as a function of all the wavefunction coefficients and to
use a standard technique from numerical analysis to carry out the minimisation process. One significant advantage
of this is that we can guarantee that the energy always decreases from iteration to iteration, removing instabilities
which it has been claimed [71] makes the Car—Parrinello molecular dynamics method unsuitable for application to
large systems [71]. The conjugate gradient method achieves this minimisation by making a series of one—dimensional
line minimisations. Again, a significant advantage is that the Hamiltonian doesn’t need to be stored, and that only the
action of the Hamiltonian on the wavefunctions is required. The details of the procedure applied with a plane wave
basis is given in [71] and in localised orbitals in [75]. Key issues are how the bands are updated, how orthogonality
constraints are imposed and what form of preconditioning is applied.

7 Linear Scaling Methodologies

7.1 Introduction

All of the conventional implementations of both density functional theory and Hartree-Fock theory described above
have a memory requirement that is proportional to N2 and a computing time that is proportional to N? where N is
a measure of the system size being modelled (i.e. it is related to either the number of atoms, the number of electrons
or, in some calculations, to the volume of the unit cell). Both of these are serious problems.

In the case of plane-wave calculations in which the wavefunction is expanded in a basis of plane waves, between
100 and 1000 plane waves per atom may be required depending on the problem being considered. If the number of
occupied states is say twice the number of atoms, then if we are performing a spin—polarised calculation using complex
arithmetic, the memory requirement is scales as N2 and is of the order 100MB for 100 atoms and 10GB for 1000
atoms. This is very considerable requirement and is in itself a serious problem. Furthermore, the computing time
scales as N3 and this also puts a serious limit on the number of atoms that can be modelled.

It seems clear that the future of computing lies with parallel processors. As a simple example, if we say that a single
workstation can model a 50 atom system in an acceptable time then a 256 processor machine can model a system
containing 50 x /256 or approximately 300, an increase of of only a factor six. Using this argument, it seems unlikely
that much more than 1000 atoms can be treated in a routine manner with these methods, even with an order of
magnitude increase in available resources. There is a significant research effort underway at present which attempts
to surmount this problem and achieve linear scaling in which both the memory requirement and the processing time
scale linearly with the system size.

It is well known that this N3 scaling can be overcome. This has been emphasised by Heine and co-workers [81] who
have expressed properties in terms of Green functions or density matrices and have developed the recursion method
to exploit this in the context of tight binding theory. This has been implemented within the LDA [82]. More recently
a number of alternative approaches have been attempted. We will look at each of these in turn.



7.2 Divide and Conquer methods

This method was implemented by Yang [83, 84] and was probably the first linear scaling method. The system in
question is divided up into a number of overlapping subsystems, that are treated semi-independently. The Hamiltonian
for each sub-system includes the potential from the other subsystems and is diagonalised independently using a
conventional LCAO method (in O(N?) operations). The charge density is then extracted and the potential updated.
This is repeated until self-consistency is achieved.

7.3 Localisation of Orbitals
In this approach two significant modifications are made to the standard approaches outlined above.

1. The orthogonalisation step required by both Car—Parrinello and direct minimisation approaches is omitted. In
place of this, an unconstrained minimisation is performed on a modified energy functional [85, 86], which is
designed to push the electron states towards orthogonality, achieving this at the minimum. In this, the sum of
one—electron Kohn—Sham eigenvalues (referred to as the band structure energy in tight binding approaches) is
given by

N
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which is defined for 2V electrons in states [¢;) and S;; = (1;|1;) is the overlap matrix, which is different from
the unit matrix d;; if the states are non-orthogonal.

2. Linear scaling is obtained when the set of functions |¢;) defining the ground state are chosen to be localised.
This set of functions is not unique, since any unitary transformation of these has the same energy. In particular,
we can describe the ground state using orthonormal localised wavefunctions or Wannier functions. These are
exponentially localised in an insulator and have power—law localisation in a metal. In practice, non—orthogonal
Wannier—like functions (WLF) are used. These are forced to decay rapidly with distance by expanding each
|1;) in terms of an underlying basis of localised orbitals, where only the basis functions within a certain cut—off
radius are included. Localisation of the wavefunctions can also be achieved with an underlying plane wave basis
[87] but at the expense of an inversion of the overlap matrix, a step best avoided.

This approach has been applied in a self-consistent form to large systems containing up to 1000 atoms [88], and in
non-self-consistent implementations up to 3840 atoms [89)].

The functionals defined above are for exactly 2V states, and it has been suggested that this leads to spurious local
minima in the functional. A generalised functional which allows for an arbitrary number of orbitals has been proposed
by Kim, Mauri and Galli [90].

7.4 Charge density matrix method

The next method we consider is based on the one—particle charge density matrix p(r,r’). The total energy can be
written in terms of this quantity as :
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where the charge density may be written as n(r) = 2p(r,r).

The quantity p(r,r’) has the property that it is short-ranged as a function of |r — r’|, a property referred to as
near—sightedness by Kohn [91]. Typically, a set of auxiliary basis functions are introduced :

pr,x') = Zpij¢i(r)¢j(rl) (26)

where the functions ¢;(r) are localised, so for example ¢;(r) = f(r — R;) where f(r) = 0 if |r|] > R.. This is extremely
important when evaluation the energy, as only O(NN) operations need to be performed. A detailed description of how
this is done is contained in [92] and [93].

The most significant challenge comes with the minimisation of the total energy with regard to the charge density
matrix. This is not straightforward as the minimisation should be carried out subject to certain constraints —
the charge density matrix must be Hermitian, correctly normalised and also idempotent, that is > = p. This last
requirement is analogous to demanding that the Kohn-Sham orbitals be orthogonal and presents a serious challenge
to progress. Two main approaches have been made:



1. An alternative functional E|[p] is introduced such that unconstrained minimisation of this automatically gives an
idempotent p which is the same as would be obtained by the constrained minimisation of the above functional.
One such functional was introduced by Kohn [91], although the functional is complicated and includes a penalty
function that has square-root behaviour at the minimum. Other minimum energy principles have been recently
published by Yang [94].

2. Another method is to use a purifying transformation. This was suggested by Li, Nunes and Vanderbilt [95] in
the context of tight-binding theory and later by Herndndez, Gillan and Goringe [92] in the LDA. In this, we
assume that we have a matrix p(r,r’) which is approximately idempotent and then perform the transformation

plrx') =3 [ o)1) =2 [ e, ) )0

which produces a quantity p(r,r’) which is closer to being idempotent. The total energy is evaluated with
this quantity, but the minimisation is carried our with respect to p. The locality of p ensures that the above
transformation can also be carried out in O(N) operations.

7.5 Grid based methods

The solution of the Kohn—Sham equations has invariably been attempted via expansion in a basis, and surprisingly
little work has used grid—based approaches common in many other branches of computational physics. A real-space
multi—grid based approach which has linear scaling has recently been proposed by Briggs et. al. [96]. This method
used a real space grid as a basis and used the multigrid technique to accelerate the convergence over the different
length scales present in the systems simulated. Some different technical problems need to be solved in this approach
compared to the basis expansion methods more routinely adopted. In particular, care must be taken with the action
of the kinetic energy operator as this cannot be evaluated exactly; some form of filtering must be included to reduce
undesirable effects when atoms move over grid points (this introduces unphysically high wave-vector components into
potentials which must be filtered out); local enhancement of the grid should be made in regions where the charge
density is rapidly varying. The implementation is described in detail in ref [96] together with references to other real
space methods.

8 Quantum Monte—Carlo Methods

Quantum—-Monte Carlo methods have began to be implemented on real materials only in the last few years as they
are extremely computationally intensive.

The first form of quantum Monte—Carlo is variational quantum Monte—Carlo and this is essentially a variational
calculation. Typically, the fized—node approximation is used. In this the (many—body) wavefunction is written as

U(ry,...,rn) = exp[J] det(T) det(l) (27)

where det(]) and det(]) are the determinantal functions constructed from the spin—up and spin—down solutions of
the Kohn-Sham equations for the system in question. In the absence of the factor exp[J] the minimisation of the
expectation value of the Hamiltonian in this function would produce the Hartree-Fock energy. The purpose of the
prefactor is to introduce correlation into the wavefunction. One form used has been [97]:

T =3 lw) = 3 (i = ) (28)
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where 7, j label the electrons and s the spin state. The functions x and w are parametrised and have a form which
implements the cusp condition when r; = r; [97, 98].

Monte Carlo methods are used to evaluate the expectation value of the Hamiltonian with this wavefunction (a 3N-
dimensional integral). A discussion of this is given in [97]. This is then minimised with respect to the parameters in
the Jastrow factor. The result is the ground state energy (which will contain statistical noise) and wavefunction.

The lattice constant and bulk modulus of carbon and silicon have been given to an accuracy comparable with the
LDA (which is already excellent), but the cohesive energy is far superior. The result for diamond is 7.45 eV /atom (to
be compared with 8.63 eV in the LDA, 5.85 eV in HF theory and 7.37 eV from experiment). The cohesive energy of
silicon is given as 4.88eV/atom (to be compared with 5.29 eV /atom in the LDA, 3.66 eV /atom in HF theory and a
series of experimental values varying from 4.62-4.88 eV /atom.



The second form of Monte—Carlo is known as diffusion quantum Monte—Carlo (DQMC) and in principle does indeed
find the ground state energy. This works by solving the time-dependent Schrédinger equation

OV
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where H = T+U is the same as given in equation (3) apart from that fact that the Coulomb interaction with the nuclei
is replaced by a non-local pseudopotential, and Er is a constant which merely changes the phase of the wavefunction.

Now, changing to imaginary time (s = it/h), we have:
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Clearly, this resembles the diffusion equation with an additional term which provides structure to the solution. This
resemblance to the diffusion equation gives the method its name. The solution to this may be expanded in energy
eigenstates :

U(r,s) =) dulr) expl(E, — Br)s] (31)

From this it is seen that if the shift, Er, is less than the ground state energy, ¥ decays to zero. On the other hand,
if Er > Ey, the solution grows exponentially. Only if Er = Ey do we get a stable wavefunction which, after all the
excited states have died out, is exactly the ground state wavefunction. In this way the ground state wavefunction and
energy can be solved. Again, stochastic methods are used to solve the equation. More background to this is contained
in Refs. [99] and [100].

This procedure is extremely time consuming and is only possible for small systems with of order 10 atoms. The
energies are however significantly lower than achieved with variational quantum Monte—Carlo. This was first applied
to properties of bulk silicon by Li, Ceperley and Martin [101], obtaining results that were slightly better than those
obtained by variational Monte Carlo. Several advances have been made since this work, particularly with regard to
the elimination of the various finite size effects present in the calculation, by incorporating standard k—point sampling
techniques [102] or by using modified interaction potentials [103].

Programmes of work are in place to study defects with these methods. These calculations are already within reach as
in Monte—Carlo theory, large unit cells of 16 or 54 atoms are necessary, even to model the bulk material. As this is
already possible, we may not have the long time—delay that was experienced with other techniques while computers
increased in power to enable the size of system to increase from the two-atom unit cell of silicon to the 54 atoms
required to model defects and more complex processes. Today, a 50 atom quantum Monte—Carlo calculation is no
more demanding with current computing power than was a 50 atom LDA calculation 15 years ago on the machines
available then.
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